
Space-times homogeneous on a time-like hypersurface

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 135

(http://iopscience.iop.org/0305-4470/15/1/022)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 135-151. Printed in Great Britain 

Space-times homogeneous on a time-like hypersurface 

R S Harness 
Department of Applied Mathematics, Queen Mary College, University of London, 
Mile End Road, London E l  4NS, England 

Received 13 May 1981, in final form 20 July 1981 

Abstract. Stationary space-times homogeneous on a time-like hypersurface orthogonal to 
a space-like congruence are studied. A classification of solutions, including all known 
solutions, of Einstein's field equations for space-times with vacuum, Einstein space or 
perfect fluid energy-momentum tensors is given. Time-like hypersurface homogeneous 
space-times with 'diagonal' metrics are also analysed. 

1. Introduction 

We shall consider solutions of Einstein's field equations homogeneous on a time-like 
hypersurface T3. The homogeneity is manifested by the invariance of geometric objects 
on the hypersurface under the action of a simply transitive group (or subgroup) of 
motions G3. The group of motions is generated by three Killing vectors, one of which 
must be time-like; therefore the space-time is stationary (or static if the time-like 
Killing vector is hypersurface orthogonal). 

Let n " ( x )  be the tangent vector to a space-like congruence, parametrised by x ,  
orthogonal to the family of homogeneous time-like hypersurfaces. Unless otherwise 
stated we use a tetrad of orthonormal vectors {ea}, where ela = n", as our basis vectors. 
The remaining vectors eA, A = 2,3,4,  span the tangent space to the orbits of the group 
of motions. Taking e4ae4a = -1, the orthonormal tetrad components of the metric 
tensor are gab = diag(1, 1, 1, -1). 

The conventions stated by Kramer er a1 (1980) are used throughout, taking 
Einstein's field equations to be Rab -$Rg,b + Agab = xoTab. We limit ourselves to 
energy-momentum tensors which are of the same form as the tetrad metric 
components, that is Tab = diag(Tll, TZ2, T33, T44) for diagonal gab. These include 
vacuum space-times, perfect fluids (including dust and Tab = 0) and Einstein spaces. 
General electromagnetic and pure radiation fields are not considered. 

2. The projection tensor 

The tensor hab = g a b  - n.nb projects geometric objects onto T3. One can use hab to split 
any tensor field in the space-time into parts parallel and orthogonal to n a (cf Greenberg 
1970). Following techniques used in papers on time-like congruences (e.g. Ellis 1967, 
Ellis and MacCallum 1973), we can split the covariant derivatives of no into symmetric 

gab being called the vorticity and expansion tensors respectively (the tilde distinguishes 

- * parts by naib = &ab + gab + tianb, where &ab = &[ab],  eab = e(&) and ti, = na;bn b , &ab and 
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136 R S Harness 

these tensors from their counterparts in space-like homogeneous hypersurfaces). 
Taking the trace and traceless parts of i a b  gives gab = Gab + f $ h , b ,  where C i a ,  = 0 and 
8 = B a a .  We may further define the vorticity vector by w = 2 q  n b w c d ,  quhcd  

- a  -1 abcd - ' *  

( -g)"*E,bcd,  g = det(gab); then G a b  = - G e n f q e f a b .  

Next we write the Fermi derivatives kA eB in terms of the infinitesimal elements, 
ha, of the Lorentz group in T3 relating a set of Fermi-Walker propagated axes to the 
basis tetrad ea:  kc * e d  = - q e f c d f i e n f ,  so na = zv ' 1 ahcd 

n b k c  ed. 

3. The commutators 

We define [e,, eh]  = Lf,,, = Draber. This is equivalent to defining D r a b  by the two-form 
equation dw" 3 - I D a b c w  A w c ,  where w a  are dual to e,. If r a b c  are the Ricci rotation 
coefficients, r a b c  E -wa,,,ebie: = ebl;,wale: ( i ,  j = 1, 2, 3 , 4  refer to a coordinate basis), 
then it can be shown that DCab = rCba - rcab. Following previous works, for example 
Estabrook et al(1968) and Ellis and MacCallum (1969), we describe DABC in terms of 
a symmetric 'three-tensor' m AB and 'three-vector' hA by D ~ ~ ~ - =  
eBcDmAD + SAcbs -8  BbC, &234 = 1 = -e , A, B, C = 2,3 ,4 .  Note that since we are 
dealing with a time-like hypersurface some equations may have a change of sign 
compared with analogous equations in the space-like hypersurface case. For example 

. Thus the commutators can be expressed as 

1 b 

A 234 

b -1 B 1 ( A  B)CD 
A - 2 D  AB but mAB = -5D CDF 

[el, e21= -ri2el - ~ 2 2 e 2 - ( ~ 2 3 - i 2 4 - ~ 4 ) e 3 3 + ( 6 2 4 + t i 2 3 + 3 3 ) e 4 ,  

[el, e3]  = -ri3el - (6 .23  + ii" + ~ ~ ) e ~  - &3e3 + ( ~ 3 ~  - fi2 - cj2)ea, 

[el, e41= - ~ ~ e ~ - ( ~ j 2 ~ - ~  - G ~ ) ~ ~ - ( G ~ ~ + ' R  +G2)e3+i44e4,  
[e3,  e4]=2G2e1+m 22 e 2 + ( m 2 3 - b 4 ) e 3 + ( m 2 4 ~ b 3 ) e 4 ,  

[e4, e l ]  = 2G3e1 + (m2? + b4)e2 + m33e3 + (m34 - b2)e4, 

[e2 ,  e3 ]  = 2 ~ ~ e ~  + ( m  24 - b3)e2 + ( m  34 + b2)e3 + m 44e4. 

' 3  ' 2  

Since n"(x) is hypersurface orthogonal we can write the metric as ds'= 
dx2 + gAB(xb a , (T being one-forms in the hypersurface coordinates. In terms of 
the one-forms w a  this is just ds2 = ( w * ) ~  + ( w 2 ) 2  + ( 0 ~ ~ ) ~  - ( 0 ~ ~ ) ~ .  Choosing w ' = dx gives 
' w l  = 0 which is equivalent to D 1 , b  = 0. Thus a consequence of n a  being hypersurface 

A B  A 

- U  thogonal is that 6" = 0 = w . 

he reciprocal group 

a set of three basis Killing vectors which generate the simply transitive group of 
i G3, then the Lie algebra of the group can be expressed as [SA. 681 = CDa& 
Example, Cohn 1957); C D A B  are known as the structure constants of the group. 
ire vector fields they too can be used to generate a group of transformations, 
x a l  group, with group structure 'constants' (see below) DABC. Restricting 
loosing them to be an invariant basis (see Ryan and Shepley 1975), i.e. such 
' = 0 ( [ e l ,  &] = 0 also), and then evaluating the Jacobi identity (SA, e,, e h  1, 

'abc are constant in each hypersurface but can vary from hypersurface to 
i.e. Dab= = DUbc(x) .  
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As usual we classify the group types into classes A and B according to whether b A is 
zero or non-zero respectively. In both class A and B, for each canonical form of mAB 
and bA we can find the associated group types (nine in all) by performing (x-dependent) 
linear transformations on the basis vectors. Since the group type is independent of any 
metric on the hypersurface we are not limited to Lorentz transformations (cf beginning 
of P 6),  and we can thereby always reduce mAB and bA to one of the canonical forms 
given in the standard tables of (Bianchi) types of three-dimensional real Lie algebras. (It 
should be noted that Since Lie groups are analytic it is not possible to change the group 
type in a continuous manner; therefore we assume the group type is the same on each 
hypersurface. This is equivalent to considering only regions of space-time in which 
there are no  discontinuities.) We give as an example the case when bA = (b2, 0 ,O)  and 

0 0  0 

d B = [ O  0 3 4  $'j, O m  
b2m34m4 # 0 

(see 0 6 (ii)). 

Ce3, e41 = 0, 

By performing the linear transformations 

e2-*d2 = ~ / m ~ ~ e ' ,  e 3 - * i 3  = m34/m4e3+2e4,  ed-*&=m / m  e3-e4,  

the new basis vectors have the commutators 

The Lie algebra has the following commutators: 

[e4, e21 = (m 34 - bde4, [e2, e31 = (m34+ 62)e3 + m4e4. 

34 4 

Comparing this with the classification tables makes it clear that this is group type VIh 
with h = -(bZ/m34)2. It can be shown that when bA = (b2, 0,O) and 

0 0  0 

that if m 7 0 the group type is VII,,, h = (b2)'/m, and if m CO the 
group type is VIh, h = ( b ~ ) ~ / m .  This is because, as seen in the classification tables, the 
modulus of the signatwe of NAB (which is diagonal) differentiates between types VIh 
and VIIh. This difference is equivalent to the sign of N22N33. Extending this idea to 

m 3  m34) we first need to diagonalise it as diag(A,, A 2 )  and it is easily show that 

A IAZ = m3m4-  (m34)2 = m. So the sign of m discerns between types VI,, and VII,,. The 
equation ( 1  - h)DABADECE = - - 2 h D A ~ ~ D E ~ c ,  which defines the invariant h, gives 
h = (b2)'jm. 

5. The Jacobi identities, Ricci tensor and conservation equations 

It is useful to note that the Jacobi identities for (eu, eb, ec)  are equivalent to the 

three-form equation d2wa = 0; the cob A w c  A ud component of d2mU is just the ( ' ) i r  
standard texts. It is more convenient here to define J{a,  b }  to be equivalent to the Jaci 

bed 
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identity given (see MacCallum 1979) by the four-form equation w a  A d2wb = 0, with the 
ordering w 1  A w 2  A w 3  A w 4  taken as positive. Then we can define the symmetric and 
antisymmetric parts of J{a ,  b }  as J ( a ,  b )  = f ( J { a ,  h }  +J{b, a } )  and J[u ,  b ]  = 
&{a, b}-J{b, a} )  respectively. The three Jacobi identities J{1, A} are in fact given by 

mABbB =o. (5.1) 

This is identical to the space-like hypersurface case where napup  = 0 (see Ellis and 
MacCallum 1969). The other Jacobi identities are tabulated in appendix 1. 

The tetrad components of the Riemann tensor, and hence the Ricci tensor, can be 
calculated from the two-form equation @ab =fRabcdwC A ud = d r a b  -t rac A r c b  where 
r a b  = rabcWc.  The components of the Ricci tensor are also given in appendix 1. 

The contracted Bianchi identities impose on Tab the conservation equations 
Tabib = 0. A perfect fluid with normalised four-velocity u a  has an energy-momentum 
tensor defined by 

Tab = ( p  + p ) u a u b  + p g a b ,  uaua = -1, p + p  # 0 and p > O ,  

where p is the density and p the pressure of the fluid. If we take u a  = e4a then the 
conservation equations yield 

P.1 - 5 4 ( p  + P )  = 0 ,  (5.2) 

( p  + ~ ) ( m ~ ~ -  b2) = 0, (5.3) 

( p  + ~ ) ( m ~ ~ +  b3) = 0, (5.4) 

( p  + ~ ) b 4  = 0. ( 5 . 5 )  

Note that (5.4) is trivial since one can perform rotations on the basis vectors which 
reduce b3 and m24 to zero (see §§ 6 and 8). 

One can immediately see from (5.5) that if bA is time-like or null there can be no 
perfect fluid solutions. Equation (5.3) gives that there can only be perfect fluid solutions 
in class B if bA is space-like with bA = ( m  , 0,O) (for example Ozsvith’s (1965) dust 
solution [10.29] (see § 9) has b2 = m34). Similarly in class A there are perfect fluid 
solutions if and only if m34=0.  Equation (5.2) gives that A-term solutions (i.e. 
p + p  = 0) must have constant p .  

34 

6. Class B, canonical forms of m A B  and b A  

In the case of space-like hypersurfaces it is easy to rotate the (space-like) basis vectors 
so that n u p  is diagonal and u p  =(a ,  0,O) (see Ellis and MacCallum 1969). This is 
because the linear transformation n u p  is symmetric and will therefore have three 
eigenvectors, one of which is u p  (from the Jacobi identities), with real eigenvalues. 
Complications arise when dealing with a time-like hypersurface because b A can be 
time-like, space-like or null, and mAB is not in general symmetric, so cannot always be 
diagonalised. Any transformations which we apply to bA and mAB in order to obtain 
their canonical forms must preserve the metric in the hypersurface TAB = diag(1, 1, -l), 
i.e. they must be members of the SO(2, 1) Lorentz group. 

In class B bA, and hence mAB, can be reduced to a canonical form as follows. 
(i) bA time-like. It is always possible to perform Lorentz transformations on the e.4 

basis vectors so that e4 is parallel to bA. The components of bA are then given by 
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b A  = (0, 0, b4)  = (0, 0, -b4), b4# 0. Equation (5.1) gives that mA4 = 0 so 

mAB=mAB=i , . .  m2 m23 o J. 
By performing a rotation in the e2/e3 plane we are able to reduce mAB to diagonal form, 
mAB = diag(m2, m3,  m4), without affecting bA. 

(ii) b A  space-like. Performing a Lorentz transformation on our basis vectors to 
make b A  = (b2,  0, 0), b2 = bZ # 0, we see by (5.1) that 

0 0  0 0 0  0 

o m34 
mAB=jO m3 ,:.j"mAB=j" o m3 m34 - m y ) .  -m (6.1) 

Since mAB is not symmetric it is in general not possible to diagonalise mAB and retain 
real matrix elements. It is however possible, by performing a boost in the e3 /e4  plane 
(which does not affect b A ) ,  to reduce mAB to a form in which at least one of m3, m4 and 

E = *l ,  when it is form invariant under 
Lorentz transformations. 

(iii) b" null, real null basis. When mAB has a (real) null eigenvector, b A  here, any 
analysis is simplified if we adopt a real null basis as our basis vectors. We choose our 
new basis {d,} to be related to the orthonormal tetrad by d l = e l ,  d2=e2 ,  d3= 

2-"'(e3 + e4) and d4 = 2-'/'(e4 - e3) .  The components of the metric tensor with respect 
to {d,}  are 

in (6.1) is zero unless m3 = m4 = 

/ l  0 0 o\ 

\o  0 -1 o/ 
As before, we limit energy-momentum tensors to ones which have the same form (with 
respect to the real null basis) as g a b ,  that is, with respect to {da}, 

T11 0 0 

Tab=[:  2' 8 ' T34 1. 
0 0 T34 0 

This condition is more restrictive than the condition in 0 1 but still covers the 
energy-momentum tensors mentioned in that section apart from perfect fluids 

The components of geometric objects, with respect to {d,}, are worked out in an 
identical manner as for {e,} above. They are given by the following commutators, in 
which the A signifies that the components of those terms are, with respect to {da}, 

(P + P f 0). 

[d l ,  d2]=-62d2+(~24+Si3)d3+(623-Si4)d4, 

[dl ,  d3] = - ( 6 2 3  + A4)d2+ ($34 -fi2)d3 + 63d4, 

[dl ,  d4] = - ( 6 2 4  - Si3)& + 64d3 + (634 + A2)d4. 

[ d ~ ,  d ~ ]  = D C ~ &  as before with the new mAB and b A  (with respect to {d,})  being 
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linearly related to the old mAB and 6" (with respect to {e,}). Note that CiZ2 = G2* - $6 
and 634 = 634 4-56 but that &ab = 6ab for all other a,  b. The Ricci tensor and Jacobi 
identities with respect to {d,} are given in appendix 2. 

Once again the Jacobi identities J(1, A} give (5.11, mABbB = 0. We are allowed to 
choose d3 (say) parallel to the null b A  so b A  = (0, b3,  O ) e b A  = (0, 0, b4) with b4 = -b3. 
Equation (5.1) then gives mA4 = 0. We have freedom of performing null rotations 
about d3 in the hypersurface, that is linear transformations which preserve the inner 
product of the basis vectors; these are given by d2 -$ d2 = d2 + pd3, d3 -$ d 3  = d3, d4 -+ 
d 4  = pd2 -t b2/2d3 + d4, p E R: then iab = d, * d b  = gab. Since b A  is not affected by such 
transformations we can use them to reduce mAB to one of the forms 

( a )  mAB = diag(m2, m3,  0) or (6 .2)  

7. Analysis of class B 

In order to simplify our analysis we wish to use the remaining degrees of freedom in the 
orientation of the basis vectors to reduce @AB, A f B, and QA to zero. This involves 
analysing the Jacobi identities and field equations. In the interests of brevity we will 
only give full details of this procedure for the case when b A  is time-like, since analogous 
procedures are used for space-like and null b". 

Theorem 7.1. The only space-time for which a time-like b" is not necessarily a shear 
eigenvector is that with a group type VIh, with h = -;. 

Proof. b~ = (0, 0,64), so in general 
' 2 m 2 3  0 m 

mAB = j ;23 ;3 J. 
The Jacobi identities J[2,4] and J[4, 31 give (i34 = fi' and 6 2 4  = -6' respectively. 
Equations (12) and (13) give 
(12) &4(3b4+m23)+634m3 =0, (13) G34(3b4 - m23)  - &24mZ = 0. 

The determinant of the coefficients of 3 2 4  and G34 in (12) and (13) gives that 
9(b4)2 + m # 0, where here 

then b A  is a shear eigenvector. When 9(b4)2 + m = 0 it is easy to show that the 
space-time has group type VIh with h = (b4) / m  = -g. 

It can be shown that if m > 0 the group type is VIIh and if m < 0 the group type is V h  
(see end of § 4); in both cases h = (b4)*/m. If m = 0 but not a11 mAB are zero the group 
type is IV and if mAB = 0 the group type is V. In all cases we can perform x-dependent 
rotations in the ez/e3 plane (this of course leaves m, and hence the group type, 
unchanged) in order to make O4 = 0 everywhere and 6.23 = 0 initially; however (23) 
gives that in general 623.1 # 0 and so, apart from the specialised cases below, 6 2 3  cannot 

2 1 
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be made zero everywhere. When mAB = diag(m2, m 2 ,  0), m2 # 0 gives via J{2,2}- 
J{3,3} that & = g3, performing an x-dependent rotation makes h4 = 0 everywhere and 
5 2 3  = 0 initially, and (23) now ensures that 5 2 3  is zero throughout space-time. (14) gives 
g2 + g3 + 2g4 = 0. Similarly when m AB = 0 an x-dependent rotation reduces h4 and 5.23 

to zero everywhere and (14) again gives 6 2  + i3 + 2g4 = 0. 
When b A  is space-like we proceed in a similar manner with the exception that, 

apart from the case when mAB = 0, we use x-dependent boosts in the e3/e4  plane to try 
and make h2 and G34 zero; these of course preserve the group type. 

Theorem 7.2. When bA is null it is a shear eigenvector. 

Proof. Taking bA = (0, 0, b4), we can reduce mAB to one of the forms (a) or (p) in (6.2) 
(this is with respect to {da}). For (a), J[2,4] implies 6 3  = 0 and J[4,3] implies 623  = h4. 
Substituting in (12) gives 823 = 0 (+h4 = 0) so b A  is a shear eigenvector. For (p), since 
the possibility mZ3 = 0 (i.e. mAB = 0) has been implicitly considered in (a), we may 
assume mZ3 # 0. Thus J{2,2} implies 6223 + h4 = 0. Using this in J{4,3} gives dZ3 = 0 = 
h4. J[2,4] gives i3 = 0. Hence a null b A  is a shear eigenvector. 

For a null b A  we are permitted to use x-dependent null rotations and boosts (with 
respect to the real null basis, boosts are transformations on the basis vectors such that 
d3 + d 3  = Ad3 and d4 + d4 = A-'d4, A = A(x)) in order to make AA zero. 

8. Class A, canonical forms of mAB 

When b A  = 0 the Jacobi identities (5.1) are identically satisfied. Since mAB is a 3 x 3 
matrix it will have at least one real eigenvalue and eigenvector. We have the freedom of 
performing Lorentz transformations on our basis vectors in order to bring (the 
appropriate) one parallel to the eigenvector and so reduce two of mAB to zero. When 
mAB has a space-like eigenvector, we Lorentz transform eA such that e2 is parallel to it; 
then mAB has the form 

m 2  o o 
mAB [: $4 ::I- 

As in class B we can perform boosts in the e3/e4 plane in order to reduce m AB to a form 
in which at least one of m3,  m4 and m34 is zero unless m 3  = m4 = when it is form 
invariant under Lorentz transformations. For a time-like eigenvector 

mAB=[;23 m 2  mZ3 ;3 :I; o 

since m AB is symmetrical we can rotate in the e2/e3 plane in order to make mAB = m AB 

diagonal. So when mAB has a space-like or time-like eigenvector it can always be 
reduced to the general form 
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When the eigenvector is null (taken parallel to d3)  then, using a real null basis, the 
eigenvector equation gives m24 = o = m . If m2 + m34 z o we can perform a null 
rotation about d3 in order to make m23 = 0, leaving m24 = 0 = m4. Transforming to an 
orthonormal basis, it can be seen that mAB is just in the form (8.1), so this case has 
already been considered. If m 2 + m 3 4 = 0  (assume m23#0,  otherwise it has been 
considered above) we can reduce m3 to zero using a null rotation. So when mAB has a 
null eigenvector we need only consider 

4 

2 23 m m 
mAB = [ ;23 0 --“I (with respect to { c i a } ) .  

-m 2 o  
Class A is classified according to whether M = det(m A B )  is zero or non-zero. When 

M Z 0 the group type is VI11 or IX and when M = 0 it is I, 11, VIo or VIIo. All the details 
are given in table 1. As in class B, we use any remaining degrees of freedom in order to 
try and reduce off-diagonal GAB and AA to zero. 

9. The classification tables 

Table 1 gives the results of our analysis of class A and table 2 that of class B. In class B 
we first classify according to whether b A  is time-like, space-like or null (see 0 6 ) .  In both 
tables the general mAB and canonical mAB are given for completeness; however 
analysis was simplified by considering specialisations based on M = det(mAB) or 
m = m2m3 -(m23)2 (or m =m3p4-jm34)2 a,s appropriate) (see end of 5 4). Zeros 
appearing in columns GAB and nA (6AB and nA when the real null basis is used) give 
those components which, by the Jacobi identities and field equations (with our 
limitation on Tab) ,  must be zero. A ‘0’ appearing in these columns means that although 
the component is not necessarily zero, by the field equations and Jacobi identities we 
can perform x-dependent rotations, boosts or null rotations which reduce them to zero 
for all x without affecting any other terms (see 8 7). A ‘-’ means that the component 
cannot (generally) be made zero. In the next column any useful equations, implied by 
the Jacobi identities or field equations, are tabulated. For each specialisation the 
appropriate Lie group type is found (see §4). The final column gives the known 
solutions (if any), by their reference number given in Kramer et a1 (1980) for each 
specialisation. The method for classifying known solutions according to our scheme is 
given in § 10. 

10. Known solutions with a G3 on T3 

We now consider solutions which have a maximal group G3, or subgroup G3, acting on a 
time-like hypersurface. Lists of these solutions appear in Kramer et a1 (1980), although 
not all of these solutions satisfy our condition on Tab. We refer to these metrics by their 
equation number in square brackets given in Kramer et a1 (1980) and also write the 
metrics in their form. The metrics are then written in one of the forms d s 2 =  
( w ’ ) ~  + ( o ~ ) ~  + ( 0 ~ ~ ) ~  - ( 0 ~ ~ ) ~  or ds2 = ( w ’ ) ~  + ( w * ) ~  -2Lj3Lj4 as appropriate, where w a  are 
duals to ea and h3,  Lj4 are dual to d3, d4. Taking dw“ gives the Dabc and we classify the 
metric according to the form of mAB and bA using our scheme. 
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Some metrics are easily classified since they are written in standard group type form. 
For example, Ellis’ shear-free dust solution (Ellis 1967), [11.74] which has a G311 on T3 

is 
E11.741 

a is a constant and Y and F are functions of x. Looking at the duals to the reciprocal 
group generators for type I1 in standard tables, it can be seen that an obvious choice is 

ds2 = dx2 + Y2F-’ dy2 + Y2F2 dz2 - (dt + 2ay dz)’; 

dwl = 0 

dw2 = (YJ Y - F,,/F)w’ A w 2  

dw3 = (Y,,/ Y + F,,/F)o’ A w 3  

1 

2 

w =dx 

w = YF-’ dy 

w 3 =  YFdz 

w =dt+2ay  dz d ~ ~ = 2 a Y - ~ w ~ ~ w ~ .  

* 
4 

The only non-zero Dabc are F~ = -2aY-* ( b A  and all others mAB are zero, hence type 
11), g2 = YJ Y - FJF and 83 = Y,,/ Y + F,,/F. 

Barnes’ (1978), type VIIo solution [11.59] has a slightly disguised form ds2=  
U 2  d z 2 + P 2  dx2+AZ[sin(2fikx)(du2-du2)-2 cos(2fikx) du dv] [11.59]. U, P and 
A are functions of z and k is a constant. One chooses 

w 1  = U dr ,  

w 3  = A[cos(hkx - v/4) du + sin(f ikx - v/4) du], 

w 4  = A[sin(hkx - 7r/4) du -cos(fikx - v/4) du], 

dw’ = 0, dw2 = PJPUw A w , 

w 2  = P dx, 

giving 
1 2  

dw3 = A,,/AUw’ A w 3  - h k / P w  2 4  A w , 

d o  = AJA Uw A w 4  + h k / P w 2  A w ’. 
3 The non-zero Dabc are 5 = m4 = - h k / P ;  hence the solution is type VIIo since 

m3m4>0.  & = PJPU, 83 = -& = A J A U  (i3+ 6 4  = 0 as required by the Jacobi 
identities and field equations). 

There are some solutions for which the one-forms are most easily spotted by 
performing a coordinate change in the metric. An example is Ozsvith’s (1965) solution 
[10.30] which has a group type IV acting on T3: 

ds2=  a2{- [ (b2-  1)/2bI2 e-’ dt2+(e-Fz dy)2+dz2+(zdt-dx)2 e-’}; 

a, b and F are constants. 
We use its three Killing vectors d,, d, and I ta ,  + ( t  +&)a, + Fyd, + 8, in order to 

determine the change in coordinates w = w(y, z)  and r = r(y, z )  which gives the metric 
in a standard IV form. 

The transformations are in fact 

w = (a/F) sinh-’(yF e-F’), r = 4F ln(e2F‘ + F2y2). 

The metric becomes 

ds2 =dw2+ a2 cosh2(aw/F) d r 2 + a 2  e-‘[c~sh(aw/F)’’~] 

x {[r + ln(~osh(aw/F)) -”~]  dt -dx}’ 

- a2[ (b2-  1)/2b] e-‘ cosh(aw/F)”F dt’. 
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Then we choose 

w 2  = a cosh(aw/F) dr, 1 w =dw, 

w 3  = a{[r  + ln(c~sh(aw/F)- ' /~>]  d t  -dx} 

w4 = a [ ( b 2 -  1) /2b] ' /2  

cosh(aw/F)", 

cosh(aw/F)F'2 dt. 

dw" give that the only non-zero Dabc are b2 (so b A  is space-like), m3 (type IV), 
03 = -e4, O2 and G34 = R . All the known solutions are classified in tables 1 and 2.  2 - -  

11. 'Diagonal' metrics 

We consider metrics of the form ds2 = d x 2 + A z ( x ) a 2 a 2 + E 2 ( x ) a 3 a 3 -  C2(x)a4a4, aA 
being one-forms in the time-like hypersurface coordinates such that d a A  = 
-$CAB@B A ac, with the Ricci tensor Rab also being diagonal (see MacCallum 1972). 
It can easily be seen that the duals, w", to the orthonormal tetrad are just U" = 
(dx, ACT', Ba3, Ca4). The two-form dw" then has ho = 0 and &ab = 0, a # b. 

Theorem 10.1. In space-times with 'diagonal' metrics bA, in class B, is always a shear 
eigenvector. 

Proof. By contradiction (see MacCallum 1972). e'", = diag(62, 63, -&); assume that 
gAB are not all equal, otherwise any vector would be a shear eigenvector. Consider any 
pair of GAB being eqyal. 

(i) B y ( 1 4 ) ,  62=e3?&:-64(2r b4=0. 
(ii) BY (13) ,  G2 = --e+ e? = -e? or b3 = 0. 
(iii) By (12),  C3 = -e4+ e2 = --e4 or b2 = 0. 

In all cases b A  is a shear eigenvector. We conclude that if bA is not a shear eigenvector 
gz, g3 or -G4 cannot be equal. If only one component of b A  is non-zero, bA is obviously 
a shear eigenvector, so we must consider cases when at least two components of b A  are 
non-zero. First note the following equations: 

(23),1+(62+63)(23)+2m2(14)rS(b4-m23)(m2+m3)(63+ 6i4)=0, 

(23),1+(62+63)(23)-2m3(14)~(b4+m23)(m2+m3)(62+64) =o, 
(24),1+(62+64)(24)+2m2(13)~(b3+m24)(m2-m4)(63+64) = 0, 

(%),I  + ( i2 + g4)(24) + 2m4( 13) j (b3 - m 24)(m2 - m4)(62 - g3) = 0, 

(34) ,1+(~3+64)(34)-2m3(12)~(b2-m34)(m3-m4)(62+64) =o,  
( 3 4 1 , ~  + ( 6 3 +  64)(34)-2m4(12)~(bz+m34)(m3-m4)(g2- 6 3 )  = 0. 

If, say, b3b4 f 0 then ( 1 0 . 1 ~ )  gives m 2 + m 3  = 0 and ( 1 0 . l b )  gives m 2 =  m4.  Equation 
( 1 0 . 1 ~ )  implies either (i) b2 = 0 = m or (ii) m3 = m 4 ,  so m = m = m = 0. For (i), 
( 5 . 1 )  implies m 3  = 0 = m ; then (10 .1~1)  or ( 1 0 . l b )  gives m2 = 0. WithA = 2 in ( 5 . 1 )  we 
have 

(10.2) 

Subtracting (34)  gives mZ3(b3 - mz4)  = 0. If b3 = mZ4 then (13)  implies 6 3 +  6 4  = 0, a 
contradiction. If m Z 3  = 0, (10.2) implies mZ4 = 0 so mAB = 0, but subtracting (13)  from 
(14)  also gives + = 0. For (ii), adding ( 5 . 1 )  to the field equations (AB), A f B, once 

( 1 0 . l a )  

(10.1 b )  

(1O.lc) 

34 2 3 4  

4 

mZ3b3 + mZ4b4 = 0. 
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again leads to contradictions. Other such contradictions arise by considering b:h4 f (i 
and b2b3 f 0. So b A  is a shear eigenvector. 

When b A  is space-like theorem 10.1 ensures that it is possible to transform 
bA + 6, = (62,0, 0) without affecting the diagonal form of 6 ~ ~ .  (5.1) gives m2^' -= 0 and 
using these in (34) gives 

\ 10.3 i 

Differentiating (10.3) and substituting for the derivatives of t nAB and ha from the 
Jacobi identities, then adding 2& (341, gives 

8 10.4 I 

If (m4-m3)b2 = ( m 3 + m 4 ) d 4 ,  multiplying by (m'--rn'), noting that, by (10.31, M' .- 

m4 implies m3 = m4 = 0, gives b2(m4 - mi3)' = h2(m3 + m4i2. Thus (10.4) gives either * -  ( i )  
( m 4 - m 3 ) 2  = (m' + m 4 ) Z a m 3 w 1 4  = 0, or (i i)  H 3 +  O4 = 0 which, by (12), implies H: = 81 -= 

- 8 4 .  

In case (i) if m3 = 0, (10.3) gives either hz = in3' or wz4 = 0. If bz = ~ 1 ~ ~ .  (12)  implies 
6 2  = &, substituting in R22 and R33 gives R2, = R33 and so the space-time is locally 
rotationally symmetric (LRS) (see Stewart and Ellis 1968, Ellis and MacCallum 1969). 
In case (i) when m4 = 0, (10.3) implies b2 = -m , (12) implies 
02 = - 6 4  and then R 2 2  = -R44 and so the space-time is locally boost symmetric (I.BS, 

(see MacCallum 1980), i.e. the isotropy is a boost in a time-like two-surface, here the 
e2/e4 plane. We conclude that in case (i)  when 1 n T 4  f 0 either 

34 2 4 b 2 ( t n 3 + m 4 ) + m .  i ~ n '  --E ) = . ( I .  

3 4 74 ( & + i 4 ) [ ( m 4 - m ' ) b 2 - ( m  + m  )in ] = 0 ,  

w .  

34 34 or in' = 0. If b2= -m - - 

0 0 0 ' 
mALI = j o  0 m 3.4 i , 

0 m" 0 j 

and the group type is V-I,, with h = - ( h 2 ) 2 / ( ~ ~ ~ . 3 4 ) Z  or the space-time is LKS or i . H s  with 
group type 111. If m 34 = 0 the group type is 111 or V depending on the values of m' and 
in . 

-= (0, 0, b4) ,  by (5.1) this implies 
m A 4  = 0, with gAB remaining diagonal; the Jacobi identity and (23) give 

4 

Similarly we can show that if b A  is time-like, ha -+ 

b4(m2 - in3) + mZ3(m2  + i d )  = 0. i 10 .5 )  

As in the space-like case this leads to either ( i )  (rn2 + m"iL = ( r n 2  - i n 3 ) 2 C 3 t ? ~ 7 ~ r 7 7  0 o r  
(ii) tX2 = e3, (14) implies 02 = 6% = -e4. 

In case (i) if m2 = 0, (10.5) gives either b4 = m'.' or n 3  = 0. If h4 = tn2.' ,  ! 14) implies 
6, = --g4 and it can be seen that R22 = -R44 and so we have LBS. If in case ( i )  vi3 -= 11, 
(10.5) gives either b4 = or m = 0. By (14), b4 = -m23 implies i3 = -g4, and then 
R3, = -R44 and so the space is LBS. In case (i)  we conclude that if m 2 3  f 0 either 

- -  - -  - 

2 

' 0  fn2' 0 ,  

; ;I m A B  = 

with group type VIh, h = -(b4)*/(m2')' or the space-time is LBS with group type 111. If 
in23 = 0 the group type is 111 or V according to m2 and m 3 .  

When b A  is null it is quicker to use an orthogonal basis so h" = (0, -h, b )  = hd3, 
b # 0. Theorem 10.1, which once again ensures we can write h A  in this fashion without 
affecting the diagonality of (Inh, gives 2 4  + fi, = 0. Equation 15.1 I implies ,n2' ~ - r n  
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and m3 = -m34 = m4. Using these in (13)  or (14) gives (&-&)(b - m Z 3 )  = 0, so either 
(i) 6 = mZ3 or (ii) g2 = g3 = -g4. If b = m23 then (34) gives m2m3 = 0. It can then be seen 
that R33 = -R44 and so the space-time is LBS with group type IV or V. 

For b A  space-like, time-like and null the metric for cases (ii) is just d s2=  
dx2 +A2(x)(a2r2 + v3v3 - v4v4), where v A  are one-forms in the hypersurface coor- 
dinates. 

12. Conclusions 

Space-times homogeneous on a time-like hypersurface orthogonal to a space-like 
congruence were studied using an orthonormal and a real null tetrad technique in 
analogy to the study of space-like hypersurfaces. 

The space-time models fall into two classes, class A and class B, depending on 
whether b A  (part of the reciprocal group structure ‘constants’ as defined in § 3 )  is zero or 
non-zero respectively. In class B a time-like b A  is necessarily ashear eigenvector unless 
the Bianchi type is VIh, h = -6. When b A  is null it is always a shear eigenvector. 

The canonical forms of mAB (defined in 0 3 )  are given. In class A the models are 
broadly classified into two classes defined by M, where M = det(mAB), being non-zero 
or zero. Class B models are classified according to whether b A  is time-like, space-like or 
null and then according to the sign of m, where m = m2m3-(mZ3)’  or m = 
m3m4 - (m34)2 as appropriate. The classification tables included all known solutions, 
and the method of classifying known solutions using our scheme was given in § 10. 

‘Diagonal’ metrics are investigated. For these metrics b A  is always a shear eigen- 
vector. Finally, for class B the ‘diagonal’ solutions fall into two categories. Either they 
are of types 111, IV, V or VIh (the first includes those solutions which have a two-surface 
which is locally rotationally symmetric or locally boost symmetric) or they have 
& = g3 = -g4 so the metric can be written as ds’ = dx2 +A2(x)(v2v2 + v3r3 - v4r4), 
where v A  are one-forms in the hypersurface coordinates. 
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Appendix 1. Jacobi identities for orthonormal tetrad basis 

We define J{a,  6) to be equivalent to the Jacobi identity given by the equation 
w n  A d 2 w b  = 0 with the ordering w 1  A w’ A w 3  A w 4  taken as positive. The symmetrised 
J ( a ,  b )  and antisymmetric J [ a ,  b ]  are defined as usual. The non-trivial Jacobi identities 
are : 
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J{4,4}  m 4 , 1 + m 4 ( 6 z + ~ 3 + ~ 4 ) + 2 m 2 4 ( C ? 2 4 + f i 3 ) + 2 m 3 4 ( 6 3 4 - f i 2 )  = 0 ,  

J (2 ,  3)  m ,I - m 64 - m24(634 + fi') 23 23 - 
- m 34(624 - 6') - m ' ( 6 2 3  - fi4) - m 3(c i23  + 6") = 0 ,  

~ ( 2 , 4 )  m24.1 + m"&+ m 2 3 ( ~ 3 4 - h 2 )  
- m 3 4 ( ~ 2 3 + f i 4 )  tmZ(G24+n  - 3  ) - m 4 ( ~ 2 4 - i I h ? )  =U.  

+ m3(634 - fi') - m 4 ( ~ 3 4  + h2) = O, 

J (3 ,4 )  m 34,1 + m ""e; - m 24(G23 - + m 23(G24 + fi' 

J[3 ,2]  

J [2 ,4]  

J[4 ,3]  
Ricci tensor (wrt orthonormal basis) 

R11= --$,I - ($2)'- ($3j2 - (64)'+ 2[(634)'+ (G24)* - ( G z ~ ) ~ ] ,  

b4,1+ b3(G34 + fi2) + b2(6.24 - h') - $Ab4 = 0, 

b3,1- b4(G34 - 6') + b2(623 + 6') + g3b3 = 0,  

b2,1- b4(624+ 6') + b3(&:23 - h4) + &b2 = 0. 

Rz2 = -&,  - &$+ 2623fi4+26z4fi3 2b3mZ4 

+ 2b4m23 - 2(b2)' -2(b3)' + 2(b4)2-2(m34)2+4[(m3 + m4)2 - (m2I2].  
..- 

R33 = -G3,1- 030 -2623fi4-26:34fi2 

-2b4m23-2(b2)2-2(b3)2 i -2(b4)2-2(m24~2+~[(m2+m4)2-(m' ) ' ] ,  

R44 = -$4,1 -$4$-2G34fi2+2624f13-2b2m34 

+ 2b3mZ4+2(b2)' + 2(b3)' -2(b4I2 -2(m23)2+t[(m4) '  - Im-- - m 3 2  1 1. 
34 - + 

- . ' -  
R12 = GZ4(3b4+ m23) -&3(3b3 - m24)+ G34(m3 + m 4 )  -- b~(262 - 63 + 64) + m (65 + @4), 

R13 = 634(3b4 - m23)  -G23(3b2 + m34) -G24(m2 + m4? + b3($2 - 263 - 64)- mZ4(& 4 g4), 

RI4 = G24(m3' - 362) -G34(m24 + 3b3) - G23(mr - m 1 -+ b4(& + 6 3  + 264) + m z 3 ( &  - & ) .  

- -  
- *  

7 3  

R 2 3  = - G 2 3 , ~ - G 2 3 ~ - f i 2 G 2 4 + f i ~ G 3 4 - n  ' 4  ( 6 2 -  - 63) - 
- b2m24 + b3m 34 - b4(m2 - m 3 )  + 2m24m 34 - m 23(m + m + m'!. 

' 3  - 
R 2 4  = -624,J - 6.24;- fi'6.23 + 0 (62 f 6 4 )  + f i " 3 3 4  

+bzm23-b3(m2+m4)-b4m34+2m23m34+m24(m2 - m 3 - m J i ,  
- - 2 -  - - 

R34 = -G34,1- G346 - 0 ( 6 3  + 64) + f 1 3 6 2 3  - fi4& 
+ bz(m + m41 - b3m 23 + b4m24 + 2m23m24 - m34(m - m ' + mJ i 

Appendix 2 

Jacobi identities for real null tetrad basis 

J { 1 ,  A} mABbB =0, A,  B = 2,3,4,  

J{2 ,2}  m2,1-m2(2634+&)-2m23(~23+f i4 ) -2m24(&4- f i3 )=0 ,  

J{3,3}  m3,1 + m3(&-2f i2)+2m23(&4+f i3)  +2m34& = 0. 
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5(4,4) m4,1 + m4(62+ 2h2) +2m24(623 - h4> + 2 ~ 1 ~ ~ 6 ~  = 0, 

3(2,3) m23,1 - m23(634 + h2) + m2(624 + 6’) - m3(623 + h4) 
-m34(624-h3)+m2464= 0, 

5(2,4)  m 24,1 - m24( 634 - h2) + m ’ ( 6 2 3  - h4) - m4(624 - h3) 
-m34(623+h4)+m2363=0, 

~ ( 3 , 4 )  m34,1+m3462+m363+m464+m23(623-h4)+m24(624+h3) =o ,  
J[3,2] b4,1-b4(634+h2)-bg64+b2(624-h3)=0, 

J[2,4] b3.1- b3(634- SZ’) - b463 + b2(623 + h4) = 0, 

5[4,3] b2,1+bZ62-b3(624+R3)-b4(623-h4)=0, 
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Ricci tensor (wrt real null basis) 

R 11 = -6,l - 26364 - 2( 634)2 - (62)’ + 4623624, 

RZ2 = -622,1-&t9+2623h3-2624f14+2m3m4-$(m2)2 

+ 2m23b3 - 2m24b4 +4b3b4 -2(b2I2, 

R 3 3  = -;3,1- G3(6+2h2) -2623h4+ m4(2b2+2m34+ m24), 
R44= - 6 4 4 . ~ - 6 4 ( 6 - 2 h 2 ) + 2 ~ ~ 4 h 3 + m 3 ( 2 m 3 4 + m 2 - 2 b 2 ) - 2 m 2 3 ( b 4 + m 2 3 ) ,  

RIZ = 623(3b4+ 

RI3 = -&4m - 623(3 bz + m 2  + wq4) + 63(3 64 - m 23) + (i2 + 634)(b3 - m 24), 

R14= 623m3+ 6 2 4 ( ~ 1 ~ + ~ 1 ~ ~ - 3 b 2 ) +  64(3b3+ m24)+(62+ 634)(b4+m23), 

R23 = -623.1 - 623(6+h2)-l14(62 + 634)+ &h3+ m2(m24-  b3)+2m4(b4- m23), 

R24 = -624.1 - 624(6-h2) +A3(&+ 6 3 4 )  - 64h4+ m2(b4+ m23) -2m3(b3+ m24), 

R34 = -6334.1 - 6346 + 62,,h3 - i24114 + 2m23m24 - m 2m 34 

- $(m 2)2 + b3m 23 - b4m 24 - 4b3b4 + 2(b2)2. 

+ 6 ~ 4 ( 3 6 ~ - m ~ ~ )  + m363-m464-2b2(62+ 
A 4  
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