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Space-times homogeneous on a time-like hypersurface

R S Harness

Department of Applied Mathematics, Queen Mary College, University of London,
Mile End Road, London E1 4N§, England

Received 13 May 1981, in final form 20 July 1981

Abstract. Stationary space—times homogeneous on a time-like hypersurface orthogonatl to
a space-like congruence are studied. A classification of solutions, including all known
solutions, of Einstein’s field equations for space—times with vacuum, Einstein space or
perfect fluid energy-momentum tensors is given. Time-like hypersurface homogeneous
space-times with ‘diagonal’ metrics are also analysed.

1. Introduction

We shall consider solutions of Einstein’s field equations homogeneous on a time-like
hypersurface T5. The homogeneity is manifested by the invariance of geometric objects
on the hypersurface under the action of a simply transitive group (or subgroup) of
motions G3. The group of motions is generated by three Killing vectors, one of which
must be time-like; therefore the space-time is stationary (or static if the time-like
Killing vector is hypersurface orthogonal).

Let n“(x) be the tangent vector to a space-like congruence, parametrised by x,
orthogonal to the family of homogeneous time-like hypersurfaces. Unless otherwise
stated we use a tetrad of orthonormal vectors {e.}, where e,* = n?, as our basis vectors.
The remaining vectors e, A = 2, 3, 4, span the tangent space to the orbits of the group
of motions. Taking es”e4, =—1, the orthonormal tetrad components of the metric
tensor are g,, =diag(1, 1, 1, —1).

The conventions stated by Kramer et al (1980) are used throughout, taking
Einstein’s field equations to be R, —3Rgas + Agas = x0T, We limit ourselves to
energy-momentum tensors which are of the same form as the tetrad metric
components, that is T,, = diag(T11, T2z, T33, Tue) for diagonal g,,. These include
vacuum space-times, perfect fluids (including dust and T, =0) and Einstein spaces.
General electromagnetic and pure radiation fields are not considered.

2. The projection tensor

The tensor hqp = gap — nany projects geometric objects onto 73, One can use A, to split
any tensor field in the space-time into parts parallel and orthogonal to n“ (cf Greenberg
1970). Following techniques used in papers on time-like congruences (e.g. Ellis 1967,

Ellis and MacCallum 1973), we can spht the covarlant derlvatlves of n, into symmctnc
parts by ng.5 = @ap + Bab + Aanp, Where Ggp = Gpas, Hab = 0(a,,) and A, = n,, on°, &ap and
B being called the vorticity and expansion tensors respectively (the tilde distinguishes

0305-4470/82/010135+173$02.00 © 1982 The Institute of Physics 135



136 R S Harness

these tensors from their counterparts in space-like homogeneous hypersurfaces)
Takmg the trace and traceless parts of B.p gives Ha,, =T +30hab, where ¢°, =0 and
6= 0 « We may further define the vorticity vector by &° =in"""Nydea, Napead =
(- g) Eabcda g =det(gas); then @up = —6°n f'rlefab'

Next we write the Fermi derivatives €4 * eg in terms of the infinitesimal elements,
)%, of the Lorentz group in T; relatmg a set of Fermi—-Walker propagated axes to the

basis tetrad e,: é. * e; = «nefch n', 50 Q% =3in**né. - e

3. The commutators

We define [e,, €] = %£., = D e.. This is equivalent to defining D, by the two-form
equation dw® = ~3D%.0" A v, where ” are dual to e,. If I'%,. are the Ricci rotation
coefficients, Iy =~w e,/ = e, ,w%e’ (i,j=1,2,3,4 refer to a coordinate basis),
then it can be shown that D¢, =1, — ;. Following previous works, for example
Estabrook et al (1968) and Ellis and MacCallum (1969), we describe D*5¢ in terms of
a symmetric ‘three-tensor’ m?®  and ‘three-vector’ by by D%pc=
escom™P +8%cbg —8%gbe, €234 =1=—¢"**, A, B, C =2, 3, 4. Note that since we are
dealing with a time-like hypersurface some equations may have a change of sign
compared with analogous equations in the space-like hypersurface case. For example
ba = %DB ap but m™B = ~%D(A cpe” P Thus the commutators can be expressed as

[e1, e2] = —rizer — B2 — (523 — O —3¥)ess + (Gas + 10+ 5 )ey,
le1, e3]=~rize; - (G23+Q*+ 3N er— 533e3+ (34— 07— @ 7)es,
[ey, es]= ~rHae;— (G2 -0’ —&7)es— (Gaat OV +67)es + Bases,
[es, es] =20°%e; +m* e, +(m™> —byes+ (m** +by)es,

[es, €2) =20 €1+ (m™ + bye, + m>es+(m>* = ba)ea,

[e2, 3]=20"%1 +(m** —b3)es + (m>* + by)es + m*e,.

Since n“(x) is hypersurface orthogonal we can write the metric as ds*=
dx’*+ gAB(x)aAaB ,o? being one-forms in the hypersurface coordinates. In terms of
the one-forms w* this is just ds’= (0" + () + ()= (0™ Choosing o' =dx gives

=0 which is equivalent to D', = 0. Thus a consequence of n“ being hypersurface
‘thogonal is that i“ =0=a"

he reciprocal group

" a set of three basis Killing vectors which generate the simply transitive group of
1 G, then the Lie algebra of the group can be expressed as [£4, £5]= CPasép
example, Cohn 1957); C b, p are known as the structure constants of the group.
are vector fields they too can be used to generate a group of transformations,
ycal group, with group structure ‘constants’ (see below) D*5c. Restricting
100sing them to be an invariant basis (see Ryan and Shepley 1975), i.e. such
"=0 ([eq, &s] =0 also), and then evaluating the Jacobi identity (£a, €., 5),
e are constant in each hypersurface but can vary from hypersurface to

ie. D% =D%.(x).
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As usual we classify the group types into classes A and B according to whether b Aig
zero or non-zero respectively. In both class A and B, for each canonical form of m
and b we can find the associated group types (nine in all) by performing (x-dependent)
linear transformations on the basis vectors. Since the group type is independent of any
metric on the hypersurface we are not limited to Lorentz transformations {cf beginning
of § 6), and we can thereby always reduce m*® and b* to one of the canonical forms
given in the standard tables of (Bianchi) types of three-dimensional real Lie algebras. (It
should be noted that since Lie groups are analytic it is not possible to change the group
type in a continuous manner; therefore we assume the group type is the same on each
hypersurface. This is equivalent to considering only regions of space-time in which
there are no discontinuities.) We give as an example the case when b4 = (b2, 0, 0) and

0 0 0
mAB:.— 0 O m34 5 b2m34m4;£0
0 m34 m4

(see § 6 (i)).
The Lie algebra has the following commutators:

[es, e4]=0, Les, e2]=(m>* —by)es, [e2, 3]= (m** +by)es+ m’e,.

By performing the linear transformations

e é=1/m*e,, e3> 63 =m>/m’es+2e,, es>é,=m>*/mes—e,,
the new basis vectors have the commutators

(€3, é4]=0, [é4, é2]=—é3—by/m>*é,, [é2, é3]=by/m>*é;+é.

Comparing this with the classification tables makes it clear that this is group type VI,
with k= —~(b,/m>*?. It can be shown that when b = (b, 0, 0) and

0 0 4]
m*B={0 m®> m
O m34 m4
that if m=m>m*—(m*")>>0 the group type is VII,, 4 =(b;)?/m, and if m <0 the
group type is VI,, & = (b,)*/m. This is because, as seen in the classification tables, the

modulus of the signatu.e of N“Z (which is diagonal) differentiates between types VI,

and3 VII;..all‘his difference is equivalent to the sign of N*? N3, Extending this idea to

m m
(m34 m ) we first need to diagonalise it as diag(A;, 1) and it is easily show that

Adz=m’m?* —(m*H?=m. Sothe sign of m discerns between types VI, and VII,. The

}ezqua(lzic;g/(l-h)DA 8aDEck =-—2hD“gpD \, which defines the invariant h, gives
=102 m.

34

3442
)

5. The Jacobi identities, Ricci tensor and conservation equations

It is useful to note that the Jacobi identities for (e, €y, €.) are equivalent to the
three-form equation d’w® = 0; the w® A ° A w? component of d°w* is just the ( ba d) ir
¢

standard texts. Itis more convenient here to define J{a, b} to be equivalent to the Jac
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identity given (see MacCallum 1979) by the four-form equation w® A d°w® = 0, with the
ordering ' Aw’ Aw> Aw* taken as positive. Then we can define the symmetric and
antisymmetric parts of J{a, b} as J(a, b)=3J{a, b}+J{b,a}) and J[a, bl=
3(J{a, BY—J{b, a)) respectively. The three Jacobi identities J{1, A} are in fact given by

m*Bpg =0. (5.1

This is identical to the space-like hypersurface case where n*?ag =0 (see Ellis and
MacCallum 1969). The other Jacobi identities are tabulated in appendix 1.

The tetrad components of the Riemann tensor, and hence the Ricci tensor, can be
calculated from the two-form equation ©% =3R%qw® A w? =dT% +T% AT, where
T, =T“.w°. The components of the Ricci tensor are also given in appendix 1.

The contracted Bianchi identities impose on T*° the conservation equations
T, =0. A perfect fluid with normalised four-velocity u® has an energy-momentum
tensor defined by

T = (uw+p)uu’+pg®, uug=-1, p+p#0and u >0,

where u is the density and p the pressure of the fluid. If we take u® =e,” then the
conservation equations yield

pa1—ba(u+p)=0, (5.2)
(u+p)m* —by) =0, (5.3)
(u +p)(m* +b3) =0, (5.4)
(n +p)ba=0. (5.5)

Note that (5.4) is trivial since one can perform rotations on the basis vectors which
reduce b3 and m** to zero (see §§ 6 and 8).

One can immediately see from (5.5) that if b is time-like or null there can be no
perfect fluid solutions. Equation (5.3) gives that there can only be perfect fluid solutions
in class B if b* is space-like with b4 = (m>*, 0, 0) (for example Ozsvéth’s (1965) dust
solution [10.29] (see § 9) has b, = m>*). Similarly in class A there are perfect fiuid
solutions if and only if m>*=0. Equation (5.2) gives that A-term solutions (i.e.
w +p =0) must have constant p.

6. Class B, canonical forms of m*® and 5*

In the case of space-like hypersurfaces it is easy to rotate the (space-like) basis vectors
so that n®g is diagonal and a®=(a,0,0) (see Ellis and MacCallum 1969). This is
because the linear transformation n®g is symmetric and will therefore have three
eigenvectors, one of which is a® (from the Jacobi identities), with real eigenvalues.
Complications arise when dealing with a time-like hypersurface because b* can be
time-like, space-like or null, and m™p is not in general symmetric, so cannot always be
diagonalised. Any transformations which we apply to 5 and m“? in order to obtain
their canonical forms must preserve the metric in the hypersurface nap = diag(1, 1, —1),
i.e. they must be members of the SO(2, 1) Lorentz group.

In class B 5%, and hence m™%, can be reduced to a canonical form as follows.

(i) b time-like. It is always possible to perform Lorentz transformations on the e,
basis vectors so that e, is parallel to b*. The components of b* are then given by
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b™ = (0,0, 5*) = (0, 0, —bs), bs #0. Equation (5.1) gives that m**=0so

2 23
m m 0
A 23 3
m*B=m?p=|m m 01
0 0 0

By performing a rotation in the e,/ e; plane we are able to reduce m™® to diagonal form,
m*® = diag(m?, m?, m*), without affecting b™.
(i) b* space-like. Performing a Lorentz transformation on our basis vectors to

make b* = (b2, 0, 0), b> = b, #0, we see by (5.1) that

00 O 00 0
m3B=0 m® m*|em?s={0 m® -m*|. (6.1)
0 m34 m4 O m34 _m4

Since m™p is not symmetric it is in general not possible to diagonalise m™g and retain
real matrix elements. It is however possible, by performing a boost in the e3/es plane
(which does not affect b*), to reduce m*® to a form in which at least one of m>, m* and
m> in (6.1) is zero unless m> =m*=em>*, e = £1, when it is form invariant under
Lorentz transformations.

(iti) 5* null, real null basis. When m™? has a (real) null eigenvector, b™ here, any
analysis is simplified if we adopt a real null basis as our basis vectors. We choose our
new basis {d,} to be related to the orthonormal tetrad by di=e;, d2=e2, d3=
27V 2(es+ey) and ds=2""%*(es—e3). The components of the metric tensor with respect
to {d,} are

1 0 0 0
0 1 0 0
gab=da'db—‘ 0 0 0 -1
0 6 -1 0

As before, we limit energy-momentum tensors to ones which have the same form (with
respect to the real null basis) as g, that is, with respect to {d,},

T, O 0 0

0 T, O 0

0 0 0 Taa|

0 0 Tsq4 O

This condition is more restrictive than the condition in §1 but still covers the
energy-momentum tensors mentioned in that section apart from perfect fluids
(u+p#0).

The components of geometric objects, with respect to {d,}, are worked out in an
identical manner as for {e,} above. They are given by the following commutators, in
which the signifies that the components of those terms are, with respect to {d,},

[di, d2]= —ézdz + (624 + ﬁ3)d3 + (523 - ﬁ4)d4,
[dy, d3]=—(023+ 0" ds + (634 — Q) d3 + 63d.s,
(di, ds]= “(524 - ﬁs)dz + é4d3 + (634 + ﬁz)dct-

B

Tab =

[da, ds]= D apdc as before with the new m™*® and »* (with respect to {d,}) being
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lmearly related to the old m* and b™ (with respect to {e,}). Note that ¢, = 65— 36
and Gy = 634+30 but that &,, = 8, for all other a, b. The Ricci tensor and Jacobi
identities with respect to {d,} are given in appendix 2.

Once again the Jacobi identities J{1, A} give (5.1), m™*®by =0. We are allowed to
choose d; (say) parallel to the  null b* 50 b =(0, b°,0)&ba = (0, 0, by) with by = —b".
Equation (5.1) then gives m”*=0. We have freedom of performing null rotations
about d; in the hypersurface, that is linear transformations which preserve the inner
product of the basis vectors; these are given by d, - dy=d,+ Bd3, di>dy=ds, d,~
di=Bd;+b*/2ds+d,, B R: then gop=d, - db = gas- Since b* is not affected by such
transformations we can use them to reduce m™? to one of the forms

0 m*  0)
(@) m™® =diag(m?, m>, 0) or (B) m*8 = (m23 0 0). (6.2)
\0 0 0

7. Analysis of class B

In order to simplify our analysis we wish to use the remaining degrees of freedom in the
orientation of the basis vectors to reduce 645, A # B, and Q* to zero. This involves
analysing the Jacobi identities and field equations. In the interests of brevity we will
only give full details of this procedure for the case when »* is time-like, since analogous
procedures are used for space-like and null 5™

Theorem 7.1. The only space-time for which a time-like ™ is not necessarily a shear
eigenvector is that with a group type VI, with i = —4.

Proof. ba=(0,0, bs), so in general

‘m2 m23 O
mAf=lm*® m> ol
\ 0 0 0

The Jacobi identities J[2,4] and J[4, 3] give 24 = 7 and daa= {1’ respectively.
Equations (12) and (13) give

(12)  G243bs+m>)+G3m>=0, (13)  G34(3bg—m™*) = Gram* =0.

The determinant of the coefficients of &4 and &34 in (12) and (13) gives that
9(bs)* + m # 0, where here
2 23

m=det(m23 m ),:&24=0:&34 (>0%=0=0%);
m m

then b” is a shear eigenvector. When 9(b4) + m 0 it is easy to show that the
space~time has group type VI, with & = (ba)’/m =

It can be shown that if m > O the group typeis VII;, and iftm<0 the group type is VI
(see end of § 4); in both cases /& = (b4)*/m. If m =0 but not all m™P are zero the group
type is IV and if m™® =0 the group type is V. In all cases we can perform x-dependent
rotations in the e;/es plane (thxs of course leaves m, and hence the group type,
unchanged) in order to make 0* =0 everywhere and &3 =0 initially; hov«iever (23)
gives that in general 23,1 # 0 and so, apart from the specialised cases below, 23 cannot
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be made zero everywhere. When m 4B — diag(m?, m*, 0), m # 0 gives via J{2,2}—
J{3, 3} that §, = 63, performing an x-dependent rotation makes (* =0 everywhere and
0'23 = O mmally, and (23) now ensures that &5 is zero throughout space-time. (14) glves
62+ 63+26,=0. Similarly when m*? = 0 an x-dependent rotation reduces Q) and 63
to zero everywhere and (14) again gives G+ 63+26,=0.

When b“ is space-like we proceed in a similar manner with the exception that,
apart from the case when m 4B =0, we use x-dependent boosts in the es/e4 plane to try
and make )* and &4 zero; these of course preserve the group type.

Theorem 7.2. When b* is null it is a shear eigenvector.

Proof. Taking ba = (0, 0, bs), we can reduce m*® to one of the forms (a) or (B) in (6 2)
(this is with respect to {da}) For (a), J [2 4] unphes 63 =0and J[4, 3] implies 623 = 0",
Substituting in (12) gives 23 = 0 (:>Q =0)so b* is a shear eigenvector. For (), since
the possxblhty m*?=0 (i.e. m*? =0) has been implicitly considered in («), we may
assume m>> # 0. Thus J {2, 2} implies 023 +0*=0. Using this in J{4, 3} gives 3 =0=
O J2, 4] nges 63=0. Hence a null b* is a shear eigenvector.

For a null 5* we are permitted to use x-dependent null rotations and boosts (with
respect to the real null basis, boosts are transformations on the basis vectors such that
di>d,= Adsand d,~>d,=A"'d,, A=A(x)) in order to make O* zero.

8. Class A, canonical forms of m*”®

When b =0 the Jacobi identities (5.1) are identically satisfied. Since m* is a 3x3
matrix it will have at least one real eigenvalue and eigenvector. We have the freedom of
performing Lorentz transformations on our basis vectors in order to bring (the
appropriate) one parallel to the eigenvector and so reduce two of m“? to zero. When
m*g has a space-like eigenvector, we Lorentz transform e, such that e is parallel to it;
then m*® has the form

m?* 0 0

mAB =10 3 34 .

0 m34 m4
Asin class B we can perform boosts in the e/ e4 plane in order to reduce m*® to aform
in which at least one of m?, m* and m>* is zero unless m> = m* = em>* when it is form
invariant under Lorentz transformations. For a time-like eigenvector

2 23
m m 0
A 23 3
m?*8=|m m 0 |,
4
0 0 m

. A . . . .
since m ” 5 is symmetrical we can rotate in the e,/e; plane in order to make m* 5 = m“*%8

diagonal. So when m™® has a space-like or time-like eigenvector it can always be
reduced to the general form

m? 0 0
4B _lo  m® m*| (8.1)
0 m34 m4
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When the eigenvector is null (taken parallel to d3) then, using a real null basis, the
eigenvector equation gives m**=0=m*. If m*+m>* #0 we can perform a null
rotation about d; in order to make m** =0, leaving m>* = 0 =m*. Transforming to an
orthonormal basis, it can be seen that m“? is just in the form (8.1), so this case has
already been considered. If m*+m>* =0 (assume m**#0, otherwise it has been
considered above) we can reduce m? to zero using a null rotation. So when m“? has a
null eigenvector we need only consider

2 23
m m 0
m*B = m? 0 -m? (with respect to {d,}).
0 -m? 0

Class A is classified according to whether M = det(m“*®) is zero or non-zero. When
M # 0 the group type is VIII or IX and when M = 0 itis I, I, VI; or VII,. All the details
are given in table 1. As in class B, we use any remaining degrees of freedom in order to
try and reduce off-diagonal 6,5 and 0* to zero.

9. The classification tables

Table 1 gives the results of our analysis of class A and table 2 that of class B. Inclass B
we first classify according to whether 6 is time-like, space-like or null (see § 6). In both
tables the general m™® and canonical m*® are given for completeness; however
analysis was simplified by considering specialisations based on M =det(m 4By or
m=m>m>—(m>)? (or m=m’m*—(m>*? as appropriate) (see end of § 4). Zeros
appearing in columns Gap and " (6ap and O* when the real null basis is used) give
those components which, by the Jacobi identities and field equations (with our
limitation on T,;), must be zero. A ‘0’ appearing in these columns means that although
the component is not necessarily zero, by the field equations and Jacobi identities we
can perform x-dependent rotations, boosts or null rotations which reduce them to zero
for all x without affecting any other terms (see § 7). A ‘—’ means that the component
cannot (generally) be made zero. In the next column any useful equations, implied by
the Jacobi identities or field equations, are tabulated. For each specialisation the
appropriate Lie group type is found (see §4). The final column gives the known
solutions (if any), by their reference number given in Kramer et al (1980) for each
specialisation. The method for classifying known solutions according to our scheme is
given in § 10.

10. Known solutions with a Gy on T3

We now consider solutions which have a maximal group Gs, or subgroup Gj3, actingona
time-like hypersurface. Lists of these solutions appear in Kramer et al (1980), although
not all of these solutions satisfy our condition on T,,. We refer to these metrics by their
equation number in square brackets given in Kramer et al (1980) and aiso write the
metrlcs m thelr form The metrlcs are then wrltten in one of the forms ds’=
(@) + (0 + (0 — (w*? ords?=(w")?+(w?)’-26°d asappropnate,wherew are
duals to e, and &>, é* are dual to ds, ds. Takingdw® gives the D, and we classify the
metric according to the form of m™® and b, using our scheme.
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Some metrics are easily classified since they are written in standard group type form.
For example, Ellis’ shear-free dust solution (Ellis 1967), [11.74] which has a GsIIon T,
is

ds’=dx®+ Y?F2dy*+ Y?F?dz? - (dr +2ay dz)*; [11.74]

a is a constant and Y and F are functions of x. Looking at the duals to the reciprocal
group generators for type II in standard tables, it can be seen that an obvious choice is

o' =dx do'=0
w?=YF 'dy dw’=(Y,/Y-F,/F)o'rw*
w’=YFdz dw’=(Y,/Y+F,/Flo'rw®

w*=dt+2ay dz ' deo*=2aY *wire’.

The only non-zero D%, are m* = —-2aY " (b* and all others m“® are zero, hence type
1), 6,=Y,./Y~F./F and §3=Y,/Y +F,/F.

Barnes’ (1978), type VII, solution [11.59] has a slightly disguised form ds’=
U?dz*+ P? dx* + A[sin(2vV2kx)(du® — dv?) — 2 cos(2v2kx) du dv][11.59]. U, P and
A are functions of z and k is a constant. One chooses

w'=Udz, w?=Pdx,
* = A[cos(v2kx — m/4) du +sin(v2kx — m/4) dv],
o* = Alsin(V2kx — /4) du —cos(v2kx — m/4) dv],
giving
do'=0, do’=P,/PUx" r0?,
de’= A /A Uw're?® ~\/—2-k/Pw2 Aw?,
do*=A_,/AUx"' A w“%—*/ik/Pw2 A,
The non-zero D%, are n}s = mj = —«/Ek/ P; hence the solution is type VII, since
m>m*>0. 6,= P./PU, 63=—68,=A /AU (83+6,=0 as required by the Jacobi
identities and field equations).
There are some solutions for which the one-forms are most easily spotted by

performing a coordinate change in the metric. An example is Ozsvath’s (1965) solution
[10.30] which has a group type IV acting on T3:

ds?=a*{~[(b*-1)/2bT e dr* + (e dy)* +dz2+ (zdr —dx)? e %};

a, b and F are constants.

We use its three Killing vectors d,, 3, and 3¢9, + (f +3x)d, +Fyd, +4, in order to
determine the change in coordinates w = w(y, z) and r = r(y, z) which gives the metric
in a standard IV form.

The transformations are in fact

w = (a/F) sinh ' (yF e ), r=3F In(e*F" +F%y?%).
The metric becomes
ds®>=dw?+ a®cosh®(aw/F) dr* + a* e "[cosh(aw/F)'F]
x{[r +In(cosh(aw/F))""F1dr —dx}*
—a’[(b*—1)/2b] e cosh(aw/F)"'F di*.
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Then we choose
o' =dw, w?=a cosh(aw/F) dr,
0> =a{[r+ In(cosh(aw/F) VF)]dt —dx} e™? cosh(aw/F)"?,
w*=a[(b>—1)/2b]"/* e7/* cosh(aw/F)"* dt.

dw give that the onlz non-zero D%, are b, (so b” is space-like), m® (type 1V),
s = —8y, 8, and &3, = O°. All the known solutions are classified in tables 1 and 2.

11, ‘Diagonal’ metrics

We consider metrics of the form ds? =dx2+ A% (x)a?c* + B (x)o’c® ~ C*(x)o*c*, o*
being one-forms in the time-like hypersurface coordinates such that do® =

—2C*5c0® A o€, with the Ricci tensor Ra also being diagonal (see MacCallum 1972).
It can easﬂy be seen that the duals, w®, to the orthonormal tetrad are just w®=
(dx, Ac?, Ba®, Ca*). The two-form dw® then has 0° =0 and 64, =0, a #b.

Theorem 10.1. In space-times with ‘diagonal’ metrics b*, in class B, is always a shear
eigenvector.

Proof By contradiction (see MacCallum 1972). 6%y ~d1ag(52, s, —8,); assume that
6“p are not all equal, otherwise any vector would be a shear eigenvector. Consider any
pair of 6“5 being equal.

(l) By (14), 02 = 03$ 92 = —04 OI' b4 =0.

(ii) By (13), 02 = —04=> 03 = —94 or b3 =0.

(iiiy By (12), f3=—0,> 8, =—84 or b, =0.
In all cases b is a shear eigenvector. We conclude that if b is not a shear eigenvector
65, 83 or —6, cannot be equal. If only one component of b* is non-zero, b* is obviously
a shear eigenvector, so we must consider cases when at least two components of b* are
non-zero. First note the following equations:

(23).1+ (62 + 63)(23) +2m>(14) > (bs — m**)(m* + m>) (65 + 64) = 0,

. . (10.1a)
(23)1+(62+ 65)(23)—2m (14):>(b4+m23)(m2+m3)(92+ 8,)=0,
(24) 1+ (63 + 64)(24) +2m>(13) > (b3 + m**)(m*> ~ m*)(65+ 64) = 0,
. . . s 2 ar (10.15)
(24) 1+ (624 604)(24)+2m"(13)=> (b3 —m ™) (m~“ —m")(6,— 63) =0,
(34) 1+ (83 + 64)(34) —2m>3(12) > (by — m>*)(m> — m*)(6,+ 64) = 0,
(10.1¢)

(34) 1+ (83 + 6)(34) —2m*(12)> (b + m**)(m>* — m*) (62— 65) = 0.

If, say, b3bs # 0 then (10.1a) gives m 2imP=0 and (10 156) glves m = m . Equation
(10.1¢) implies either (i) b, =0= m>* or (i) m®*=m"* so mi=m3=m —0 For (i),
(5.1) implies m?>=0=m*; then (10.1a) or (10.15) givesm =0. WithA=2in(5.1) we
have

m®2bs+m**b,=0. (10.2)
Subtracting (34) gives m>*(bs—~m**)=0. If bs= then (13) implies 63+ 6,=0, a
contradiction. If m23 =0, (10.2) implies m** =050 m™® =0, but subtracting (13) from

(14) also gives 83+ 8,=0. For (ii), adding (5.1) to the field equations (AB), A # B, once
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again leads to contradictions. Other such contradictions arise by considering b, # 0
and b,b3#0. So b* is a shear eigenvector.

When b/A is space-like theorem 10.1 ensures that it is possible to transform
ba - ba=(bs, 0, 0) without affecting the diagonal form of éAB. (5.1) gives m>* =0and
using these in (34) gives

bz(m3+m4)+m34(m3—m4):(i. 10,3y

Differentiating (10.3) and substjtuting for the derivatives of m™? and b4 from the
Jacobi identities, then adding 26, (34), gives

B3+ 8)[m* —mD b —(m +mHm ™= 0. 104

If (m ~m )bz = (m +mhym™, multiplying by (m4 -m ) noting that, by (10.3), 1 =
m lmphes m’ = m = 0 1ves bz(m -m3= be(m +m™*?. Thus (10.4) gives elther (1)
(m. —-m’)P?= (m +meom*m ~() or (ii) Hz+94 -—OWthh by (12), implies 9« = 9: =
—8,.

In case (i) if m* =0, (10.3) gives either by = m Morm®=0. If by=m"", (12) implies
6= 53, substituting in Ry, and Rs;; gives Ry; = R3; and so the space-time is locally
rotationally symmetrlc (LRS) (see Stewart and Elhs 1968, Ellis and MacCallum 1969).
In case (1) when m* =0, (10.3) implies b, = —mPorm’=0. i by=—m"* (12) implies
92 = —64 and then R;; = —R4, and so the space-time is locally boost symmemc (LBS}
(see MacCallum 1980), i.e. the isotropy is a boost in a time-like two-surface, here the
e,/ es plane. We conclude that in case (i) when m>* %0 either

00 0
m*®={0 0 rn”[
0o om0

and the group type is VI, with i = —(b>) 2/im™*)® or the space—time is LRS or i. B with
group type 111. If m 3% = 0 the group type is Il or V depending on the values of m’ ¥ and
4
m.
Similarly we can show thatif b is time-like, b4 = ba = (0, 0, ba), by (5.1) this implies
m™* =0, with §45 remaining diagonal; the Jacobi identity and (23) give

b4(m2—m3)+m23(m2+m3):O. 110.5)

As in the space-like case this leads to either (i) (m” emY =(mT omyYemTm =0or
(11) 92 = 63, (14) 1mp11es 62 = 93 = —64

In case Q) if m* =0, (10.5) ) gives either by = m>orm®=0. bs=m", (14) implies
672 = ~94 and it can be seen that Rzz = —R44 and so we have LBS. If 1 in case {)ym’=0,
(10.5) gives either b, = ~m** or m*=0. By (14), b, = —m*> implies 03 = —@,, and then
R3; = —Ry44 and so the space is LBS. In case (i) we conclude that if m? =0 either

i O m> 0y
mAgz(r7123 0 0)

0 0 0!

with group type VI, i1 = —(ba)?/(m™?)* or the space-time is LBs with group type II1. If

=0 the group type is lII or V according to m® and m".
When #* is null it is quicker to use an orthogonal basis so b = (0, —b, b) = bd;,
b # 0. Theorem 10.1, which once agam ensures we can write b in this fashion without
affecting the diagonality of Ban gives G1+6,=0. Equation (5.1) implies m B
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and m>= —m = m . Usmg these in (13) or (14) gives (62— 85)(b—m>*) =0, s0 either
(i) & =m>?or (ii) 6> =6;=—84. It b = m?® then (34) gives m?m?>=0. Itcanthenbeseen
that R33 = —R44 and so the space-time is LBS with group type IV or V.

For b% space-like, time-like and null the metric for cases (ii) is just ds’=
dx’+ A x) e’ +a’a> —o*c?), where o are one-forms in the hypersurface coor-
dinates.

12. Conclusions

Space-times homogeneous on a time-like hypersurface orthogonal to a space-like
congruence were studied using an orthonormal and a real null tetrad technique in
analogy to the study of space-like hypersurfaces.

The space-time models fall into two classes, class A and class B, depending on
whether 5 (part of the reciprocal group structure ‘constants’ as defined in § 3) is zero or
non-zero respectively. In class B a time-like 5* is necessarily a shear eigenvector unless
the Bianchi type is VI, i = —3. When b* is null it is always a shear eigenvector.

The canonical forms of m“? (defined in § 3) are given. In class A the models are
broadly classified into two classes defined by M, where M =det(m“?), being non-zero
or zero. Class B models are classified according to whether 5* is time-like, space-like or
null and then according to the sign of m, where m=m’m>—(m?>)* or m=
m>m*—(m>*)* as appropriate. The classification tables included all known solutions,
and the method of classifying known solutions using our scheme was given in § 10.

‘Diagonal’ metrics are investigated. For these metrics b* is always a shear eigen-
vector. Finally, for class B the ‘diagonal’ solutions fall into two categories. Either they
are of types III, IV, V or VI, (the first includes those solutions which have a two-surface
which is locally rotationally symmetric or locally boost symmetrlc) or they have
62 = 03 = —04 so the metric can be written as ds*>=dx +A2(x)(a- o+l —ote?),
where o are one-forms in the hypersurface coordinates.
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Appendix 1. Jacobi identities for orthonormal tetrad basis

We define J{a, b} to be equivalent to the Jacobi identity given by the equation
w® And*w® =0 with the ordering ' A w? A > Aw* taken as positive. The symmetrised

J(a, b) and antisymmetric J[a, b] are defined as usual. The non-trivial Jacobi identities
are:

J{1,A} m*Bpy=0 A,B=2,3,4,
J{2,2) m? i+ mP (63— 6,— 0,) —2mP(Goa+ QY —2m** (G2 - 0?) = 0,
J{3,3} mP14+m3(6:— 03— 65)—2m> (62— O~ 2m>* (24 + O3 =0,
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T, 4 m* i+ m* 02+ 63+ 05+ 2m*} (Gaa+ )+ 2m > (G5 — O =0,
J(2,3) m® i -mP0,-m*(Gu+0%
—m** (G20~ )~ m*(Gas~ O —m (G2 + O =0,
J2,4) m*  +m™ 0+ mP (G4 — 00
— (G + AN+ MG+ O —m*(F2a— O =0,
J(3,4) m™ +m*6,— m* (G2~ Q)+ mP(Gaa+ O
3 (Faa— Q) ~m*(Faa+ %) = 0,
J[3,2] bas+bs(Gaa+ ) +by(Goa— %)~ faby =0,
J(2,4] byy—ba(Fra— QD) +by(Ga3+ Q)+ 6355 =0,
J[4,3] byy—ba(Gaa+ %)+ bs(Ga3— QF) + 6,0, =0.
Ricci tensor (wrt orthonormal basis)
Riy=—61-(62)" = (65" = (8 + 2[(634)° +(624) — (G22)°],
Ry =~y — 020 + 26230 +26240° + 2b3m>
+2bam™ = 2(b2)* = 2(b3)* + 2(bs)* = 2(m > + Y (m> + m* —(mH?),
Raz= 0316030 — 252300 —253.0° = 26,m™>*
~2b4m™ = 2(by)* = 2(b3)* +2(ba)? — 2(m*H + Y (m* + m*? = (m*)*],
Ruys= =041~ 040 — 263407 +26240° = 2b,m™*
+2b3m>* +2(b2)? +2(b3)* = 2(ba) —2(m>> +3[(m*)
Riz = G24(3ba+m>>) — G23(3b3 = m**) + Gaa(m> + m*) = b3(26, — 63+ 64) + m>* (61 + 6,),

Riz= 634(3b4—m23)—6’23(3b2+m34)—~o~'24(m2+m4)+b3(672—28~3* (;4)—~m24((5:+ 54),

2

—(m*=m>7],

- -

Ria=Gaa(m> =3b3) — G3a(m™ +3b3) — Gas(m” — m°) + ba(f2+ 65+ 264) + m™> (6, ~ 63).
R23 = ~(;23’1 —&23é~62&24+ﬁ3&34-ﬁ4(é2“ (53)

—bzmz""%-b3m34——b4(m2—m3)~i~2m24m34

B m+m,
Ros= 0241~ G246 ~ VG2 + 6, + 64)+ QG4

+bzm23-b3(mz+md')-b4m3’4+2m23m3“+m“(m2 -m—m™,
Ris=—034, — G340 — 0 (65+ 54) ‘*‘635'23 -0%G24

2 324
+bymP+mH—bsm B+ bam* +2m P m

4 2 3 4
—mmt—mt - mt

Appendix 2

Jacobi identities for real null tetrad basis

J{1,A} m®Pbg =0, A,B=2,3,4,

J(2,2} m* i~ m2(263a+ 62) —2mP (623 + QY ~ 2m** (62s— 0°) = 0,
J(3,3} m’i+m*(6:-20H+2m*(bae+ Q%) +2m ™6, =0,
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T4, 4} m* i +m* (B +200)+2m** (62— QY +2m>* 85 =0,

J(2,3) m? 1 —mP (635 + 0D+ m(6ra+ 0% —m> (623 + O
- m“(éu —f)3) + m24§4 =0,

J2,4) m™ 1 —m** (83— 0 +m*(623— )~ m*(624— )
—m34(523+f24)+m23§3=0,

JB,4) m*  +m>*6,+m36;+ m*0s+mP (623 — O+ m* (B0 + %) =0,

J(3,2] bai—ba(fss+ 0% —b36s+b2(62s— %) =0,

J[2,4] b3i— b3(534— ﬁz) - b4é3 + bz(ézs + ﬁ4) =0,

J[4,3] bas+ b2y —bs(624+ %)= ba(Brs -0 = 0.

Ricci tensor (wrt real null basis)

Ry = “é,x —26364—2(634) - (62)° +4623624,

Ry =—0,1— 620 +26:30° 26,0 +2m>m* —3(m?)?
+2mPb3—2m* by + 4bs3bs—2(bs),

Ry = =631~ 036 +207) - 26,30+ m* 26+ 2m> + m>) +2m* (b — m™*),

Rus=—641- 046 207+ 26,,0° + m>2m™>* + m* = 2b) —2m P by + m™),

Riz=623(3bs+ m™) + 6243b3—m>*) + m>85— m*64—2b,(6, + 64),

Riz= —624"14 - 623(31)2 +m*+m*+ 53(31)4 -m?)+ (éz + 534)(173 -m?**),

Rys= é‘23"13 + 524(m2 +m>=3by)+ 64(353‘*' m**)+ (62‘*‘ 634)(b4+ m?),

Ras=—6231— 0236+ 07~ Q4 (6, + 630) + 6:0° + m*(m* — bs) + 2m*(bs ~ m*),

Ras=—0241— 6246 ~ )+ 26, + 634) — 6:0° + m* (b + m*®) —2m> (b3 + m*),

Riy= —534,1 — 346 + 6,36° — 6240 +2m32m* —m*m>*

—3m®? + bsm®P —bam® —4bsb, +2(b)>
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